A Shopping List for Your Beam Profiler

Avatar

OphirBlog

Choosing the best profiler for a laser is a complex process. There is no one profiler available that works with all lasers because of all the factors involved. Here we’d like to help you begin figuring out what to focus on when doing laser profiler shopping (window or otherwise).
First of all, keep in mind that there are two main types of profilers used today:
1. Array/camera based profilers and (array is a general term for camera-types of technology where pixels are used to capture an image.)
2. Mechanical scanning apertures and knife edges profilers.
The main four things you’ll need to know about your laser are:
1. The wavelength
2. The beam size
3. The power and
4. Whether the laser is continuous wave (CW) or pulsed
Here is a table with examples of some of the ways these factors affect the laser profilers needed:

Laser characteristic

Which profiler fits

Notes

Wavelength Criteria

 

 

Wavelengths of 250nm-1100nm

Silicon detector camera and scanning slit based profilers.

These are the most cost-effective profilers. They include CCD or CMOS cameras and silicon detector-equipped scanning aperture systems.

UV Wavelengths of <190nm-250nm

CCD and CMOS cameras are best but they can be damaged at these wavelengths. Conversion plates and imagers will be necessary for more than occasional use.Pyroelectric, imagers and scanning slit, systems can operate deep into the UV without risk of damage.

 

Wavelengths from 1100nm-1700nm

Up to 1300nm, regular silicon cameras will work. After that, either pyroelectric/InGaAs arrays or germanium/pyroelectric scanning slit systems are necessary.

At lower resolution, Phosphor coated arrays are also available

Pyroelectric and InGaAs are 5-10 times the price of silicon detectors.

Scanning slit systems are lower in price.

Phosphor coated arrays are the least expensive with resolution of ~50mm

Wavelengths >1700nm

Pyroelectricimagers and scanning slit systems, can operate into the far infrared.

 

Beam Size Criteria

 

 

Beam diameter of 1mm

Silicon, InGaAs, Phosphor coated and Pyroelectric arrays are suitable. Scanning slit systems are available with apertures up to 25mm.

Beam should cover about 10×10 pixels. Pyrocam pixels are 100mm.

Beam diameter of 250µm

Silicon and InGaAsarray pixels and scanning slit systems

InGaAs pixels size is ~30mm.

Beam diameter of 50µm

Silicon cameras, with smaller pixel sizes

and scanning slit systems

The pixels on silicon arrays are down to ~4mm

Beam diameter of 4µm – 50mm

Scanning slit profilers only

 

Powerand Energy Criteria*

 

 

Powers>100mW up to ~300W

Direct Measurement:

Pyroelectric detector equipped scanning slit profiler

 

Using beam splitters/attenuators:

array profilers

 

The amount of power being measured will affect whether or not attenuation or beam splitting is needed. It will also determine the detector type. Of course, as we’ve seen, CCD and CMOS cameras will always need attenuation. Scanning slit profilers can measure beams directly without attenuation.

 

High power lasers >300W up to thousands of watts

Spinning or scanned wire techniques or beam splitters with scanning slits

 

Pulsed lasers at a repetition rate of less than 1Hz-2kHz

Camera array profilers

 

Continuous wave lasers or pulsed lasers with repetition rates above 2kHz

Camera array profilers or

Scanning slits

This depends on the repetition rate, beam size, the length of the pulses, power levels and pulse energy thresholds.


* All of the above technologies can be used at most power/energy levels but will require varying amounts of beam attenuation before exposing the detection system to the laser beam.

More Questions

How, where and for what purpose will your profiler be used?
The scanning slit system does not need much or any attenuation which makes it easier to use, especially with continuous wave (CW) or high frequency pulsed lasers. It can measure focused and unfocused beams one after the other and it can also measure very small beams directly. This could make it the profiler of choice on a factory floor since it creates ease of use. It is also good for measuring a laser at various points along its propagation, like in the case of the M2, or focusing an optical system.

The camera array profilers are suited for both CW and pulsed lasers and reveal true beam profile structure (which is important for tuning lasers) since it shows a two dimensional view of the beam.  The spatial resolution of a camera based system is best for performing more complex beam analysis such as TopHat, Gaussian Fit, Orientation, Ellipticity, etc.

Read the full article Beam Profiling: A Primer by Allen M. Cary, Photon Inc., San Jose CA

You might also like to read: Driving Blind: Why the Need for Industrial Laser Beam Profiling?

Share this:

Avatar

OphirBlog

471 posts

Contact us

Leave a Reply

Your email address will not be published. Required fields are marked *

Your email will not be displayed in the comments. Only approved comments will be displayed.

Comments

Cookies & Privacy – This site uses cookies to help optimize your browsing experience.
RefusePrivacy PolicyAccept